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Abstract

Model structure selection is currently an open problem in modeling data via Gaussian Mixture 

Models (GMM). This paper proposes a discriminative method to select GMM structures for pattern 

classification. We introduce a GMM structure selection criterion based on a discriminative objective 

function called Soft target based Max-Min posterior Pseudo-probabilities (Soft-MMP). The structure 

and the parameters of the optimal GMM are estimated simultaneously by seeking the maximum 

value of Laplace’s approximation of the integrated Soft-MMP function. The line search algorithm is 

employed to solve this optimization problem. We evaluate the proposed GMM structure selection 

method through the experiments of handwritten digit recognition on the well-known CENPARMI 

and MNIST digit databases. Our method behaves better than the manual method and the generative 

counterparts, including Bayesian Information Criterion (BIC), Minimum Description Length (MDL) 

and AutoClass. Furthermore, to our best knowledge, the digit classifier trained by using our method 

achieves the best error rate so far on the CENPARMI database and the error rate comparable to the 

currently best ones on the MNIST database. 

 

Keywords: Gaussian Mixture Models (GMM), Structure selection, parameter estimation, 

discriminative learning, Finite Mixture Models (FMM), Max-Min posterior Pseudo-probabilities 

(MMP). 
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1. Introduction 

Gaussian Mixture Model (GMM) is a widely used statistical tool in pattern classification. They 

are flexible enough to approximate any given density with high accuracy [1]. In fitting GMM to data, 

we need to select the number of GMM components and estimate parameters in the GMM with 

certain number of components. The two tasks are usually known as structure selection and parameter 

estimation, respectively. Currently, the satisfactory results of GMM parameter estimation have been 

reported in many literatures. But how to select appropriate GMM structures is still a challenge. 

Existing methods of GMM structure selection can be divided into five categories: cross-validation 

[2-3], stochastic methods [4], information theory approaches [5-7], infinite Gaussian Mixture 

Models [8-9], and Bayesian methods [1, 10-13]. The main idea of the last category is to evaluate 

model structures using the integral over parameters. Various criteria under Bayesian framework have 

been developed for GMM structure selection, including Bayesian Information Criterion (BIC) [10], 

Laplace criterion [11], variational Bayesian criterion [12], Laplace-Empirical criterion [13], etc. 

These works show that Bayesian methods are promising to solve the problem of model structure 

selection. However, most existing Bayesian methods are based on generative learning, usually on 

classical Maximum Likelihood Estimation (MLE), where only positive examples are involved to 

determine model structures. Therefore, the discriminative ability of the model is somewhat ignored. 

In recent years, discriminative learning algorithms such as Minimum Classification Error (MCE) 

[14], Maximum Mutual Information (MMI) [15], Minimum Phone Error (MPE) [16] and Max-Min 

Posterior Pseudo-Probabilities [17] have demonstrated their advantages over generative learning 

counterparts for parameter estimation of GMMs. Compared to the advances in discriminative 

parameter estimation, discriminative structure selection has not received enough attention. Recently, 

Klautau et al. [18] presented a MMI based method to determine the GMM structure. Liu and Gales 

[19] introduced a discriminative method of GMM complexity control under Bayesian model 

structure selection framework. In the method of Liu and Gales, a marginalized discriminative growth 

function of MMI\MPE criterion was presented to select the GMM structure. They evaluated their 

method in large-vocabulary continuous-speech recognition. 

In this paper, we propose a discriminative GMM structure selection method for pattern 

classification through embedding a discriminative learning criterion into Bayesian model structure 

selection framework. The used discriminative learning criterion is SOFT target based Max-Min 

posterior Pseudo-probabilities (Soft-MMP) [20]. An integrated Soft-MMP function is introduced and 

approximated with Laplace’s method, the value of which is used to evaluate the GMM structure. By 

employing the line search algorithm to find out the maximum value of Laplace’s approximation of 

the integrated Soft-MMP function, the structure and the parameters of the optimal GMM are 

determined simultaneously in a discriminative manner. Our work is closely related to that of Liu and 
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Gales [19], but the model evaluation criteria are different from each other. We advise a Soft-MMP 

based criterion in this paper, while Liu and Gales designed MMI or MPE based one. Furthermore, 

we employ the line search algorithm for model structure selection, while the merge-split strategy is 

used by Liu and Gales.  

Our method was applied to handwritten digit recognition and evaluated on two well-known 

handwritten digit databases, CENPARMI [21] and MNIST [22]. We compare our method with the 

manual method and three main generative counterparts, including BIC [10], Minimum Description 

Length (MDL) [7], and AutoClass [23]. The comparison results show that the proposed method 

improves both the recognition rates and the generalization ability of GMM based handwritten digit 

classifiers. Compared with these GMM structure selection methods, our method brings (1) 27.78% 

to 51.85% reduction in the error rate on the CENPARMI test set and 15.87% to 33.75% reduction 

for the MNIST test set; (2) 0.18% to 0.45% increase in the generalization ability which is measured 

as the ratio of the recognition rate on the test set to that on the training set for the CENPARMI 

database and 0.06% to 0.17% increase for the MNIST database. 

Furthermore, to our best knowledge, our method brings the best error rate so far on the 

CENPARMI database and the error rate comparable to the currently best ones on the MNIST 

database. In the work of Liu et al. [24-25], the state-of-the-art techniques of handwritten digit 

recognition, including features and classifiers, is thoroughly investigated on both CENPARMI and 

MNIST database. They use 8-direction gradient features (abbreviated to e-grg there) and the 

classifier of either SVM with RBF kernel or Discriminative Learning Quadratic Discriminant 

Function (DLQDF) to report the error rate of 0.95% on the test set of the CENPARMI database. 

Using the same e-grg features by courtesy of Liu, we achieve the better error rate of 0.65% on the 

same test set. This result also outperforms the other up-to-date results reported on the CENPARMI 

database by using various features and classifiers [24-29], including previous best result of 0.85% 

from SVM with RBF kernel and deslant chaincode feature [25]. For the MNIST database, our 

method achieves the error rate of 0.53% on the test set by using e-grg feature. This result is 

comparable to the best error rate of 0.42% for e-grg feature [24] and the overall best error rate of 

0.39% [30] on the same database. 

The rest of this paper is organized as follows. Section 2 describes Bayesian model structure 

selection framework and Soft-MMP discriminative learning criterion. Section 3 presents our 

discriminative method of GMM structure selection. Section 4 reports the experimental evaluation of 

our method for handwritten digit recognition. We discuss our conclusions and future work in Section 

5. 
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2. Preliminaries 

In this section, we briefly introduce Bayesian structure selection and Soft-MMP. The reader is 

referred to Liu and Gales [19] for more details of Bayesian model structure selection and Chen [20] 

for more details of Soft-MMP.  

2.1. Bayesian model structure selection 

Let M  and �  be the number of components and the set of unknown parameters of a GMM, 

� �Mp �  be the parameter prior distribution, � �NxxX ,,1 ��  be a training data set of N

examples. Then the integrated likelihood for the model is 

� � � � � � ���XX dMp,MpMp �� .                          (1) 

In Bayesian model structure selection methods, the optimal model structure will be determined by 

maximizing the integrated likelihood: 

� � � � ���X dMpMpM
M ��� ,maxarg .                        (2) 

Following [19], � �Mp �  is treated as uninformative. Therefore, the optimal model structure is 

computed by 

� � ��X dMpM
M ��� ,maxarg .                            (3) 

The integrated likelihood in Eq. (3) is usually a high-dimensional and intractable integral. Various 

analytic and numerical approximations have been proposed. We use Laplace’s approximation [10] in 

this paper, which can be expressed as 

� � � � � �
� �Mp

MpMp
S

,log

2
,

2 �X
�XX

�� ��

�

	

�

�
,                (4) 

where 
*�  is the MLE of parameters, S  is the number of parameters, and   denotes the 

determinant of a matrix.  

2.2. Soft-MMP 

The Soft-MMP is developed to estimate parameters in the posterior pseudo-probability based 

classifier [17], a recently proposed variant of Bayesian classifier. Let x  be a feature vector, iC

be the i -th class, and � �iCp x  be the class-conditional probability density function. Then the 

posterior pseudo-probability of being iC  for x  is computed by 

� �� � � �� �ii CpCpf xx ��

� exp1 ,                         (5) 
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where �  and �  are positive numbers. For any input pattern, we compute the corresponding 

posterior pseudo-probabilities of all the classes under consideration. Then the input pattern is 

classified as the class 
*C  with the maximum posterior pseudo-probability:  

� �� �iC
CpfC

i

xmaxarg* � .                             (6) 

According to Eq. (6), the posterior pseudo-probability is in direct proportional to the 

class-conditional probability density, so the classification decision made by posterior 

pseudo-probabilities is consistent with that by traditional Bayesian counterpart which assumes the 

prior probabilities of all the classes are equal. However, posterior pseudo-probabilities take values in 

]1,0[ , by introducing which discriminative learning approaches such as MMP [17] and Soft-MMP 

[20] can be developed for Bayesian classifiers. Furthermore, the posterior pseudo-probability is a 

natural similarity measure and is useful for (1) making rejection decision, (2) combining 

classifiers, and (3) assessing the performance of a classifier in a much more accurate way than 

that of counting the number of patterns classified correctly [31]. 

The class-conditional probability density function in Eq. (6) should be provided for constructing a 

posterior pseudo-probabilities based classifier, which is assumed to be the GMM in this paper. Let 

M  be the number of GMM components; kw , k�  and k�  be the weight, the mean, and the 

covariance matrix of the k -th Gaussian component, respectively. 1
1

�� �

M

k kw . Then we have 

� � � �kkk

M

k
k NwCp ��xx ,

1

�
�

� ,                          (7) 

where 

� � � � � � � ��
�
�

�
�
� 


� 




kk
T

kk

d

kkkN �x��x���x 1
2

1

2

2

1
exp2, � .               (8) 

By substituting Eq. (7) into Eq. (6), we get a posterior pseudo-probabilities based classifier. The 

original Soft-MMP learning method is able to estimate the parameters in this classifier, but the 

GMM structure needs to be set manually.  

Let Ĥ  and H  be two adaptive soft targets which take values in ]1,0[ ; x̂  and x  be the 

feature vector of arbitrary positive and negative example of a class, respectively; m  and n  be the 

number of positive and negative examples of the class in the training set, respectively. Then the total 

empirical loss of the posterior pseudo-probabilities based classifier is measured to be 

� � � ���
��

��
n

i
i

m

i
i Ml

n
Ml

m
ML

1

2

1

2 ,;
1

,;ˆˆ1
),( �x�x� ,                 (9) 

where �  is the parameter set, � �Ml ,;ˆˆ �x  is the empirical lose of the classifier on positive 

examples: 
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� � � �� �
� �� � � �� ���

�
�
�

�

�

�
HCpfCpfH
HCpf

Ml
i

i

ˆˆ,ˆˆ

ˆˆ,0
,;ˆˆ

xx
x

�x ,               (10) 

and � �Ml ,; �x  is the empirical lose of the classifier on negative examples:  

� � � �� �
� �� � � �� ��

�
�

�

�

�
HCpfHCpf
HCpf

Ml
ii

i

xx
x

�x
,

,0
,; .              (11) 

The objective of Soft-MMP is to minimize the empirical loss and maximize the difference 

between Ĥ  and H , which can be formally described as 

� � � � � �MLdMF ,)1(1,
2 ��   
�
� .                   (12) 

In Eq. (12), HHd 
� ˆ , and   is a non-negative constant to control the tradeoff between the 

empirical loss and the difference between two soft targets. 

Consequently, the task of Soft-MMP learning is to find out the optimal parameter set 
��  by 

minimizing � �MF ,� :

� �MF ,minarg ��
�

�� .                             (13) 

In the next section, this minimization problem is transformed to the maximization one for defining 

our model structure selection criterion. 

3. The proposed method 

In this section, we present our discriminative method of GMM structure selection based on 

Laplace’s approximation of the integrated Soft-MMP function. We firstly describe our model 

structure selection criterion and its Laplace approximation. We then give a line search algorithm for 

finding out the optimal GMM structure and parameters. 

3.1. Inverse Soft-MMP function 

Our evaluation criterion of GMM is defined by replacing the likelihood function in the Bayesian 

evidence integral (1) with the discriminative Soft-MMP function. However, the original Soft-MMP 

learning is a minimization problem. The integrated Soft-MMP function cannot be approximated with 

Laplace’s method. In order to remove this obstacle, the original Soft-MMP function (12) is rewritten 

as 

� � � � � ���
�

�
��
�

�


��
� ��

��

n

j
i

m

i
i lmlnmnHHMF

1

2

1

2 ;
2

;ˆˆ
2

ˆ0.1),(
~ �x�x� ! .     (14) 

The first term in the right part of Eq. (14) stands for the distance between two soft targets and the 

second term for the empirical loss. These two terms are balanced by the tradeoff parameter ! . We 

can obtain the optimal parameter set 
��  by maximizing ),(

~ MF � :

� �MF ,
~

maxarg ��
�

�� .                               (15) 
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The objective expressed in Eq. (15) is the same as the original one in Eq. (13). Both of them try to 

minimize the empirical loss and maximize the difference between two soft targets. However, the 

Soft-MMP learning based on Eq. (15) is a maximization problem. It is feasible to compute Laplace’s 

approximation of the corresponding integrated function. 

3.2. Discriminative criterion for GMM structure selection 

According to Eq. (15), we can determine the optimal parameter set 
��  for specific GMM 

structure. Then the optimal GMM structure 
�M  will be selected as 

� �
"
#
$

�
�
�

	

� �
�

�
��

�

S

i
iM
MFMFM

1

2 ),(
~

log
2

1
),(

~
2maxarg �� ��� ,          (16) 

where 
S
ii MF 1

2 ),(
~

�	 �  is the second order partial derivatives of ),(
~ MF �  with respect to each 

parameter in � . This selection criterion of GMM structure is obtained by substituting ),(
~ MF �

for � �Mp ,�X  in Eq. (3) and then performing computational simplifications. The detailed 

derivation is given as follows.  

Firstly, replacing � �Mp ,�X  in Eq. (3) with ),(
~ MF � , we get 

� � �� dMFM
M ��� ,

~
maxarg .                             (17) 

Laplace’s approximation of � � �� dMF� ,
~

 is 

� �
),(

~
log

2
),(

~
),(

~
2 ��

�

�

�

��
�

�

�

	

�

��
� MF

MFdMF
S

�
���

��

�
.                (18) 

Since the arithmetic overflow is possible to occur when computing � � �� dMF� ,
~

,

� � �� dMF� ,
~

log  is considered here. We further introduce 

� � � �� �MFMF ,
~

2exp, �� ��
�

,                         (19) 

which is directly proportional to � �MF ,
~ � . Laplace’s approximation of � � �� dMF� ,log

�
 is 

� � � � � �
� � ��

�

�

�

��
�

�

�

	

�

��

�� MF
MFdMF

S

,log

2
,log,log

2 �
���

��

�
�� �

               

       
� �

�
�

�

�

�
�

�

�

	

��

�
�

�
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~

2

2
log

2

1
),(

~
2

2 MF
MF

S

�
�

�� �
�� .          (20) 
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As shown in Eq. (19) and (20), we can get the same structure selection result based on 

� � �� dMF� ,
~

log  or � � �� dMF� ,log
�

, but the computation is simplified by introducing  

� �MF ,�
�

.

  A complex model often contains many parameters, such as more than 2000 in our experiments. So 

the cost of calculating the Hessian matrix ),(
~2 MF �	  is very expensive. In this paper, the 

Hessian matrix is assumed to have a diagonal structure for making the problem tractable. The 

assumption works well in our experiments. Thus we have 

� � � �
�
�

�

�

�
�

�

�

	

��

�
�

�

�

�
),(

~
2

2
log

2

1
),(

~
2,log

2 MF
MFdMF

S

�
���

�� �
��

�
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�

�

�

�
�

�
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�
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�
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2

2
log
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1
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~
2

2 MF
MF

S

S

�
�

���
��  

� �),(
~

log
2

1
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~
2 2 MFMF �

�
�

�	

� �� ���  

� ��
�

�
�

�	

�
S

i
i MFMF

ii
1

2 ),(
~

log
2

1
),(

~
2 �� ��� .            (21) 

Finally, we get our GMM structure selection criterion: 

� � �� dMFM
M ��� ,logmaxarg

�
                                    

� �
"
#
$

�
�
�

	

� �
�

�
�

�

S

i
iM
MFMF

1

2 ),(
~

log
2

1
),(

~
2maxarg �� ��� .   (22) 

3.3. Optimization algorithm 

3.3.1. Structure selection 

In most of existing model structure selection methods, the exhaustive search strategy is used and 

the search interval is decided manually. Since Laplace’s method approximates the integral of a 

function by computing the volume under a Gaussian, Laplace’s approximation of the integrated 

Soft-MMP function, i.e. Eq. (21), is a unimodal function with respect to M . So we employ the line 

search algorithm to seek the maximum value of Eq. (21), which includes two stages.  

In the first stage, an initial search interval of the number of GMM components is determined by 

the advance-retreat method [32]. The algorithm starts from a triggering number to find three 

numbers in a monotonic direction. The values of Eq. (21) corresponding to these three numbers 

should show “low-high-low” trend. If the algorithm fails to find numbers satisfying the condition, it 
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retreats to the triggering number and performs the similar search in the opposite direction. In the 

second stage, the search interval is reduced continuously by the golden section method [33] until a 

maximum value of Eq. (22) is reached. The golden section method compares function values on two 

tentative numbers in and two end-numbers of search interval. Suppose the four numbers are arranged 

in ascending order from left to right. If the maximum function value comes from one of the left-hand 

two points, the search interval is reduced by discarding the right end-number. Otherwise, the search 

interval is reduced by discarding the left end-number. This procedure is iteratively performed until 

none tentative points can be selected in the search interval. The number corresponding to the 

maximum value of Eq. (22) in the final search interval is outputted as the optimal result. It should be 

noted that the discrete numbers are searched in the process above. Two tentative value calculated in 

each iteration of the golden section method will be rounded down (lower value) or up (higher value). 

The details of the two stages in the line search algorithm are given in Table 2.  

The computational complexity of the line search algorithm and the exhaustive search algorithm 

are analyzed and compared with each other in the following. Suppose the length of the initial search 

interval is L . By using the golden section method, the search interval will be reduced to 

� � Ln618.0  after n  iterations. Since the discrete space is explored, the searching must terminate if 

� � 1618.0 �Ln . So the upper bound of iteration time for the golden section method is 

Ln 618.0log1
� .                                (23) 

As for the exhaustive search algorithm, the computational complexity is usually measured by the 

mean acquisition time, � �LE , which is the expected value of finding each point within the search 

interval. Since 1�n  iteration time is required by the exhaustive search strategy to find the n -th

point, we have 

� � � �
2

1
1

132 �
��

����
�

L
L

LLE �
.                      (24) 

Comparing Eq. (23) to Eq. (24), we can conclude that the efficiency of the golden section method 

is better than the exhaustive search strategy if the search interval is large enough. Fig. 1 shows that 

the advantage of the golden section method becomes more and more obvious when the search 

interval is increased.  
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Fig. 1. The relationship between the length of search interval (abscissa) and the iteration time of the 

golden section algorithm or the exhaustive search algorithm (ordinate). 

3.3.2. Parameter estimation 

For each explored GMM structure in the line search process, the optimal parameters of the 

corresponding GMM are estimated according to Eq. (15). We apply the gradient ascent method to 

solve this maximization problem. Let t�  and t%  be the parameter set and the step size in the t

-th iteration, respectively; � �MF t ,
~ �	  be the partial derivatives of � �MF t ,

~ �  with respect to 

each parameter in t� . Then we have 

� �MF tttt ,
~

1 ��� 	��� % .                          (25) 

t�  includes the classifier parameters and two soft targets, i.e., Ĥ  and H . So the two soft targets 

are adaptively adjusted according to Eq. (25) in each training iteration. 

In order to reduce the overfitting problem and accelerate the speed of parameter estimation, we 

involve only training examples easily confused with each other in the parameter estimation 

procedure. It is realized by temporarily removing training examples, for which posterior 

pseudo-probabilities have distinctly exceeded the corresponding soft target. Let tŜ  and tS  be the 

set of positive and negative examples of the class iC , which are involved in the t -th training 

iteration, respectively. Then the data removal schema can be expressed as 

� �� �� �
� �� �� ���

�
�
�

&'
��

&'���







1

1
ˆˆˆˆˆˆ

ttit

ttit

HCpf

HCpf

SxxxS

SxxxS

(

(
,                 (26) 
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where t(  is a threshold value for determining whether the posterior pseudo-probability is distinctly 

exceed the soft target. Let maxt  be the maximum times of training iterations; max(  and min(  be 

the maximum and minimum value of t( , respectively. Then t(  in the t -th training iteration is  

maxminmaxmax )( ttt (((( 

� .                       (27) 

The removed examples in the t -th training iteration will be reinserted into the training set in the 

� �Rt � -th training iteration. R  is the required span of training iterations, in which the example is 

excluded from the training. Let 0R  be the minimum span, i  be the times of an example being 

removed from the training set. Then R for this example is  

0iRR � .                                  (28) 

3.3.3. Algorithm steps 

We summarize our GMM structure selection algorithm for each class in Table 1-2. The algorithm 

is composed of two-layer optimization procedure, the outer is for GMM structure selection and the 

inner is for parameter estimation of the GMM with fixed structure. The whole process of 

discriminative GMM structure selection is to perform this algorithm one by one for all the classes 

under consideration. 
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Table 1.

Soft-MMP parameter estimation algorithm.

Input: training data set, initial parameters of posterior pseudo-probability measure function, initial 

values of two soft targets, and the iteration number 0�t .

Optimization: 

Repeat 

Step 1 Compute the empirical loss of the current classifier on the training data set. 

Step 2 Remove the examples from the training set according to Eq. (26). 

Step 3 Compute the partial derivative of ),(
~ MF t�  with respect to each parameter using 

remaining examples. 

Step 4 Update the unknown parameters using Eq. (25). 

Step 5 Update (  using Eq. (27). 

Step 6 Reinsert the examples removed in the previous iterations based on Eq. (28). 

Step 7 1�� tt .

Until convergence or maxtt � . Let ) be an infinitesimal, then the convergence condition is 

� � � � )�
 �1tt FF �� .

Output: the estimated soft targets and parameters of posterior pseudo-probability measure function. 
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Table 2.

The GMM structure selection algorithm. 

Input: 0M : triggering number of GMM components; * : search step size; 1�+ :

acceleration factor; 2�! : terminal length of search interval. 

Model Structure Selection: 

Step 1 Initialize the search interval , -ba, by the advance-retreat method

Step 1.1 Let the iteration number 0�t . Estimate parameters in the GMM by the 

Soft-MMP parameter estimation algorithm shown in Table 1 and compute 

� � � � �� dMFMt �� ,log
�

.  using Eq. (22). 

Step 1.2 Let *��� tt MM 1 . Compute )( 1�tM. . If )()( 1 tt MM .. �� , then go to 

Step 1.3, or else go to Step 1.4. 

Step 1.3 Let +** � , tMM � , 1�� tt MM , 1�� tt , and go to Step 1.2. 

Step 1.4 If 0�t , then let 1�� tt MM , ** 
� , and go to Step 1.2. Otherwise, let 

� �tMMa ,min� , � �tMMb ,max� , and go to Step 2.  

Step 2 Reducing the search interval by the golden section method

Step 2.1 Let 1�t , aat � , bbt � .

Step 2.2 Calculate two numbers in the interval , -ba, : � �/ 0tttt abap 
�� 382.0  and 

� �1 2tttt abaq 
�� 618.0 .

Step 2.3 Estimate parameters in the GMM with tp  and tq  components by the 

Soft-MMP parameter estimation algorithm shown in Table 1, respectively. Compute 

)( tp.  and )( tq. .

Step 2.4 If )()( tt qp .. � , go to Step 2.5, or else go to Step 2.6. 

Step 2.5 If !�
 tt pb , terminate the search process and output the optimal GMM with 

tq  components. Otherwise, let tt pa ��1 , tt bb ��1 , tt qp ��1 ,

� �1 21111 618.0 ���� 
�� tttt abaq , compute )( 1�tq. , and go to Step 2.7. 

Step 2.6 If !�
 tt aq , terminate the search process and output the optimal GMM with 

tp  components. Otherwise, let tt aa ��1 , tt qb ��1 , tt pq ��1 ,

� �/ 01111 382.0 ���� 
�� tttt abap , compute )( 1�tp. , then go to Step 2.7. 

Step 2.7 Let 1�� tt  and go to Step 2.2. 

Output: the GMM with optimal structure and parameters 
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4. Experiments 

We evaluate our method of GMM structure selection by applying it to handwritten digit 

recognition. The resultant digit classifier is tested on the well-known CENPARMI database [21] and 

MNIST database [22]. The CENPARMI database contains 4,000 training examples and 1,000 test 

examples, and the MNIST database contains 60,000 training examples and 10,000 test examples.

4.1. Digit Modeling and Learning 

The 8-direction gradient features (e-grg) [24] are used to represent digits in the experiments for 

both CENPAMI and MNIST database. The original 200-D e-grg is compressed to 100-D by the 

Principal Component Analysis (PCA) technique to improve the computation efficiency. The 

orthogonal GMM technique [34] is further used to reduce the correlation among elements in the 

feature vectors. Then, the feature vectors for each digit class are assumed to be of the GMM with 

diagonal covariance matrix. As a result, the set of unknown parameters in the Soft-MMP learning of 

our digit classifier is 

� � MkHHw�� k ,,1,,ˆ,,,,, ��� kk ��� .                   (29) 

Some parameters in Eq. (29) must satisfy certain constraints, which are transformed to unconstrained 

domain for easier implementation. The constraints and transformation of parameters are listed in 

Table 3. A tiny variance value in covariance matrices of the GMM will lead to the computational 

instability of class-conditional probability density function. So we impose a positive minimum limit 

on variance value, which is denoted as 3  in Table 3. Consequently, the transformed parameter set 

is

Mkhhw kk ,,1},,,
~

,,~,
~

,~{
~

21 ��� ��� k�� .                 (30) 

We use the discriminative model structure selection algorithm shown in Table 2 to determine the 

optimal M as well as other parameters in Eq. (30), and then transform them into the original ones. 
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Table 3 

The constraints and transformation of parameters in the learning of digit classifiers. 

Original parameters and constrains Transformation of parameters 

1ˆ0 �� H ; 10 ��H
11

1ˆ
he

H 
�
� ;

21

1
he

H 
�
�

0�� ; 0�� � ��� ~exp� ; � ��� ~
exp�

       34 �kj � � 344 �� kjkj
~exp

� � 1kw       

�
�

k

k

w

w

k e
ew ~

~

4.2. Experimental results 

The parameters in our algorithm were set by experiments and listed in Table 4. These parameter 

values were used for both CENPARMI and MNIST test. 

Table 4 

Algorithm parameter setting. 

Parameter t% maxt ! max(
min( 0R 3

Value 0.00001 30,000 0.1 0.5 0.01 50 0.001 

The role and experiential setting method of each parameter in Table 4 are explained as follows. (1) 

t%  and maxt  are the step size and the maximum iterative times for the gradient ascent optimization, 

respectively. They have important influence on training efficiency and effectiveness. Although some 

heuristic methods for setting t%  and maxt  have been presented in literatures [35], the choice of 

them is mainly data dependent at present. (2) The parameter !  controls the tradeoff between two 

sub-objectives in the Soft-MMP learning criteria, i.e., the minimum empirical loss and the maximum 

difference between two soft targets. So !  should be adjusted to make the weighted values of two 

parts in Eq. (14) be close to each other. (3) The parameter 3  is used to prevent the computational 

instability of class-conditional probability density function. It must be positive and be set as small as 

possible. (4) The other algorithm parameters, including max( , min( and 0R , are used for data 

selection in the training process. The values of max(  and min(  should be large enough and small 

enough respectively, so that the training set can be exploited sufficiently at initial stages of training 

while more and more examples which have been learned well can be ignored at succedent training 

stages. As for 0R , the increase of its value will lead to more efficient algorithm but more risks of 
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worsening training results. We determined the ideal 0R  by experiments. Although the proposed 

algorithm can work without the data selection procedure, the inclusion of it can improve training 

efficiency and effectiveness. In a previous work, we conducted the handwritten digit recognition 

experiments on the MNIST database by using the original Soft-MMP with or without data selection 

procedure. The experimental results show that the use of data selection can lead to better training 

efficiency and generalization ability which is measured as the ratio of the recognition rate on the test 

set to that on the training set. On a same computation platform, the training time was decreased from 

7805 seconds to 3549 seconds, while the generalization ability was increased from 0.9959 to 0.9960. 

4.2.1. Comparisons of model structure selection methods 

Our discriminative model structure selection method is compared with manual setting method and 

three generative counterparts, including BIC [10], MDL [7] and AutoClass [23]. The GMM 

structures selected by automatic methods vary with different digit classes. We list the GMM 

structure selection results on the CENPAMI and MNIST database in Table 5-6, respectively. As 

shown in Table 5, the number of GMM components computed by our method averages around 4 for 

the CENPAMI database. So we perform three tests of manual setting on the CENPARMI database, 

in which 3 to 5 numbers of the GMM components are assigned to all the digit classes, respectively. 

For the MNIST database, 6-8 numbers of GMM components are considered in the manual setting 

tests because of the same reason. 

 
Table 5 

The GMM structure selected by BIC, MDL, AutoClass, and our method for each digit class on the 

CENPAMI database. 

0 1 2 3 4 5 6 7 8 9 Average 

BIC 4 4 3 4 5 4 4 5 5 4 4.2 

MDL 3 3 2 2 4 3 2 4 3 2 2.8 

AutoClass 4 3 4 4 4 4 3 5 5 5 4.1 

Our 4 3 3 5 3 3 5 4 6 5 4.1 

 

Methods

Classes
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Table 6

The GMM structure selected by BIC, MDL, AutoClass, and our method for each digit class on the 

MNIST database. 

0 1 2 3 4 5 6 7 8 9 Average 

BIC 6 12 6 7 4 7 6 9 6 7 7.0 

MDL 3 5 3 3 5 4 3 5 3 4 3.8 

AutoClass 4 8 5 4 5 6 6 9 4 8 5.9 

Our 5 10 4 4 6 5 4 7 9 10 6.4 

Besides structure selection, the parameter estimation is another important problem for GMM 

modeling. In our method, the structure selection and the parameter estimation are completed 

simultaneously in a discriminative manner. However, the generative EM algorithm is used to 

estimate parameters in original BIC, MDL, and AutoClass. In order to fairly compare these three 

model structure selection methods and ours, the Soft-MMP discriminative learning algorithm is used 

to revise the parameters from original BIC, MDL and AutoClass, respectively.  

Based on three model structures set manually and four model structures determined automatically, 

we get seven digit classifiers for the CENPARMI and MNIST database, respectively. Then the 

handwritten digit recognition is performed by using each of these seven classifiers on the training set 

and the test set, respectively. Table 7 shows the corresponding error rate on the training set (Train) 

and the test set (Test) for the CENPAMI database and Table 8 for the MNIST database. The 

generalization ability of each classifier is further measured as the ratio of the recognition rate on the 

test set to that on the training set. It is denoted as “Test/Train” in Table 7-8. The larger ratio value 

means the better generalization ability. In Table 7-8, we also list the reduction in the error rate on the 

test set (Reduction_test), which is brought by our method compared with other methods. 

As shown in Table 7-8, our discriminative method of GMM structure selection achieves the better 

result than manual method as well as generative counterparts. Compared with BIC, MDL, and 

AutoClass, our method brings 27.78%, 40.91% and 38.10% reduction in the error rate on the 

CENPARMI test set, and 27.40%, 32.91% and 15.87% reduction in the error rate on the MNIST test 

set, respectively. Furthermore, our method improves the generalization ability from 0.9922 (BIC), 

0.9912 (MDL) and 0.9915 (AutoClass) to 0.9940 (ours) on the CENPARMI database and from 

0.9956 (BIC), 0.9958 (MDL) and 0.9960 (AutoClass) to 0.9966 (ours) on the MNIST database. 

Methods
Classes
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Table 7

Error rates from four automatic methods and the manual method of structure selection on the 

CENPAMI database, where 3-component to 5-component mean that 3 to 5 numbers of GMM 

components are manually assigned to all the digit classes, respectively.  

Structure Selection Method Train (%) Test (%) Reduction_test(%) Test / Train 

3-Components 0.300 1.35 51.85 0.9895 

4-Components 0.225 1.15 43.48 0.9907 

5-Components 0.200 1.15 43.48 0.9904 

BIC 0.125 0.90 27.78 0.9922 

MDL 0.225 1.10 40.91 0.9912 

AutoClass  0.200 1.05 38.10 0.9915 

Our 0.050 0.65 - 0.9940 

Table 8

Error rates from four automatic methods and the manual method of structure selection on the 

MNIST database, where 6-component to 8-component mean that 6 to 8 numbers of GMM 

components are manually assigned to all the digit classes, respectively.  

Structure Selection Method Train (%) Test (%) Reduction_test(%) Test / Train 

6-Components 0.31 0.80 33.75 0.9951 

7-Components 0.25 0.76 30.26 0.9949 

8-Components 0.21 0.67 20.90 0.9954 

BIC 0.29 0.73 27.40 0.9956 

MDL 0.37 0.79 32.91 0.9958 

AutoClass  0.23 0.63 15.87 0.9960 

Our 0.19 0.53 - 0.9966 
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4.2.2. Comparisons to the state-of-the-art digit classifiers 

The handwritten digit recognition rate achieved by our method is further compared with the 

state-of-the-art on the CENPAMI and MNIST database, respectively. 

(1) CEMPAMI database 

In the paper of Liu et al. [24-25], state-of-the-art techniques of handwritten digit recognition, 

including features and classifiers, are thoroughly investigated on the CENPARMI database. They 

reported their best error rate of 0.95% on the CENPARMI test set for e-grg features by using either 

SVM with RBF kernel or DLQDF. They also reported the overall best error rate of 0.85% on the 

CENPARMI test set, which comes from 8-direction deslant chaincode feature (des) instead of e-grg 

[25]. Our digit classifier achieves better result based on e-grg features, i.e. the error rate of 0.65% on 

the test set. Furthermore, we collect other up-to-date results on the CENPARMI database and 

compare them with ours in Table 9. It shows that the digit classifier trained by the proposed GMM 

structure selection method experimentally outperforms other counterparts. 

Table 9

      Error rates of various up-to-date digit classifiers on the CENPARMI database. 

Classification Method Feature Test (%) 

Modular Neural Network [26] class dependent features 2.15 

Local Learning Framework[27] 32-direction gradient features 1.90 

Neural Network[28] random features 1.70 

Virtual SVM [29] 32-direction gradient features 1.30 

SVC-rbf [24] e-grg 0.95 

SVC-rbf [25]  des 0.85 

Our e-grg 0.65 

(2) MNIST database 

  Liu et al. [24-25] also compared state-of-the-art techniques of handwritten digit recognition on the 

MNIST database. They reported the best error rate of 0.42% on the test set for e-grg features by 

using SVM with RBF kernel. Our method achieves the comparable error rate of 0.53% by using the 

same features. Furthermore, we also collect other up-to-date results on the MNIST database and 

compare them with ours in Table 10. It shows that the performance of our method outperforms most 

of the state-of-art techniques and comparable to the currently best ones. 
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Table 10

      Error rates of various up-to-date digit classifiers on the MNIST database. 

Classification Method Feature Test (%) 

Convolutional Net LeNet-1 [22] Subsampling 1.7 

Polynomial SVM [36] 32-direction gradient features 1.4 

Boosted LeNet4 [37] Subsampling 0.70 

Large Convolutional Net [38] Unsup features 0.62 

SVM [39] Vision-based feature 0.59 

SVM [40] Trianable feature 0.54 

K-NN [41] Shiftable edges 0.52 

VSVM [29] 32 direction gradient features 0.44 

SVC-rbf [24] e-grg 0.42 

Large Convolutional Net [30] Trainable feature 0.39 

Our e-grg 0.53 

5. Conclusions 

In this paper, a discriminative structure selection method of Gaussian Mixture Model (GMM) has 

been proposed based on Bayesian structure selection framework and a discriminative learning 

criterion of Bayesian classifiers, called Soft target based Max-Min posterior Pseudo-probabilities 

(Soft-MMP). Our main contribution is to tailor and integrate the Soft-MMP objective function into 

Bayesian model structure selection framework with Laplace’s approximation. The resultant model 

structure selection criterion is the maximum value of Laplace’s approximation of integrated 

Soft-MMP function. By developing a line search algorithm to find out this maximum value, we 

simultaneously determine the structure of and the parameters in the optimal GMM.  

The proposed GMM structure selection method was tested in handwritten digit recognition tasks. 

The experiments were conducted on the well-known CENPAMI and MNIST handwritten digit 

databases. Our method experimentally outperforms manual setting method and generative 

counterparts including Bayesian Information Criterion (BIC), Minimum Description Length (MDL) 

and AutoClass, both in recognition accuracy and generalization ability. Furthermore, to our best 

knowledge, the handwritten digit classifier trained by our method achieves the best recognition rate 

so far on the CENPARMI database and the comparable result to the currently best ones on the 

MNIST database.  

The advantages of the proposed method are three-fold: (1) the discriminative criterion of structure 

selection is directly related to classification lose, so the method can work well on small data sets; (2) 
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by using the line search strategy instead of commonly used exhaustive search strategy, the method is 

suitable for large-scale structure selection problems; and (3) with the help of data selection schema, 

the computation is tractable even for training on large data sets. However, the proposed method 

gives more emphasis on the training data which are confused with each other, so its robustness to 

noise data seems inferior to that of generative counterparts.  

In the future, we will evaluate the effectiveness of the proposed method in more applications, on 

more databases, and for other finite mixture models besides GMM. 
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